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A. Montorsia

Department of Physics, University of Illinois at Urbana-Champaign, 61801, USA
and Dipartimento di Fisica and Unitá INFM, Politecnico di Torino, 10129 Torino, Italia

Received: 17 February 1998 / Received in final form: 6 March 1998 / Accepted: 17 April 1998

Abstract. We investigate under which circumstances extended Hubbard models, including bond-charge,
exchange, and pair-hopping terms, are invariant under gl(2, 1) superalgebra. This happens for a two-
parameter Hamiltonian which includes as particular cases the t−J , the EKS and the one-parameter BGLZ
Hamiltonians, all integrable in one dimension. We show that the two parameter Hamiltonian can be
recasted as the sum of the BGLZ Hamiltonian plus the graded permutation operator of electronic states
on neighbouring sites. The integrability of the corresponding one-dimensional model is discussed.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 75.10.Lp Band and itinerant
models

1 Introduction

Recently the interest in low-dimensional correlated elec-
tron systems has motivated some attention on certain
integrable one-dimensional models which happen to be
invariant under the graded algebra gl(2, 1) [1–7]. More
precisely, starting from R-matrices which can be built
from representations of gl(2, 1), different integrable inter-
acting electron models are obtained in the Hamiltonian
limit of the transfer matrix thereof constructed. In partic-
ular, from the family of four-dimensional representations
[b, 1/2] parametrized by a parameter b 6= ±1/2 (see be-
low), a one-parameter extended Hubbard model has been
derived [2] (BGLZ), and successively its eigenvalues have
been evaluated within quantum inverse scattering method
(QISM) [8] by means of algebraic Bethe Ansatz [5]. Nev-
ertheless, while the machinery for constructing integrable
electron models with given symmetry starting from R-
matrices built in the symmetry algebra is well established
within the framework of QISM, little is known about the
inverse problem, namely the question of integrability of
Hamiltonians with given (super)symmetry algebra. With
this in mind, in the present paper we begin to derive
the more general extended Hubbard Hamiltonian invari-
ant under the superalgebra gl(2, 1). This turns out to be
(in any dimension) a two-parameter Hamiltonian, which
contains as limiting cases the one-parameter BGLZ, the
t−J [1] and EKS [9] models. By successively expressing
such Hamiltonian as a sum of local two-site Hamiltoni-
ans, by means of projection operators in the representa-
tion [b, 1/2]⊗ [b, 1/2] of gl(2, 1) we then show that infact
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the whole class of gl(2, 1) invariant Hamiltonians can be
written as the sum of the BGLZ Hamiltonian and the
graded permutation operator of neighbouring electronic
states (which coincides with the EKS model Hamiltonian),
commuting at the local level. The integrability of the re-
sulting model in one dimension is discussed.

2 Two-parameters supersymmetric
Hamiltonian

The extended Hubbard model was originally derived by
Hubbard himself [10]. Its Hamiltonian reads

H = −
∑
〈j,k〉

∑
σ

[t−X(nj,−σ + nk,−σ)

+ X̃nj,−σnk,−σ]c†j,σck,σ + U
∑

j

nj,↑nj,↓

+
V

2

∑
〈j,k〉

njnk +
W

2

∑
〈j,k〉

∑
σ,σ′

c†j,σc
†
k,σ′cj,σ′ck,σ

+
Y

2

∑
〈j,k〉

∑
σ

c†j,σc
†
j,−σck,−σck,σ + µe

∑
j,σ

nj,σ, (1)

where c†j,σ, cj,σ are fermionic creation and annihilation

operators ({cj,σ′ , ck,σ} = 0 , {cj,σ, c
†
k,σ′} = δj,k δσ, σ′I,

nj,σ
.
= c†j,σcj,σ, nj =

∑
σ nj,σ ) on a d-dimensional lat-

tice Λ (j, k ∈ Λ, σ ∈ {⇑,⇓}), and 〈j, k〉 stands for nearest
neighbors (n.n.) in Λ. In (1) the first term represents the
band energy of the electrons, and the remaining terms de-
scribe their Coulomb interaction energy in a narrow band
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approximation: U parametrizes the on-site diagonal inter-
action, V the neighboring site charge interaction, X the
bond-charge interaction, W the exchange term, and Y the
pair-hopping term. An explicit evaluation of the relative
size of these contributions – all generated from onsite and
n.n. matrix elements of the Coulomb interaction – was al-
ready given in [10]. For the sake of generality, an additional

coupling term X̃ has been included, which correlates hop-
ping with on-site occupation number. Finally, µe is the
chemical potential.

The circumstances under which (1) is invariant for the
su(2)

⊕
su(2) symmetry algebra of the standard Hubbard

model were already discussed in [11], were such symme-
try was used to construct explicitly ordered ground states
for (1) in particular regions of the phase-space. Here we
investigate instead which relations the coupling constants
have to satisfy in order to have H invariant under the su-
peralgebra gl(2, 1). The latter is generated by the identity
and the generators of osp(2, 2) algebra, namely

S+ =
∑

j

c†j,↑cj,↓, S− =
∑

j

c†j,↓cj,↑,

Sz =
1

2

∑
j

(nj,↑ − nj,↓), B =
1

2

∑
j

(nj,↑ + nj,↓ − 1) (2)

in the even part, and

Qσ =
∑

j

s|j| [(1− nj,−σ)cj,σ + b′ nj,−σcj,σ] , (3)

Q†σ in the odd part (for their commutation relations, see
for instance [3]). Here s = ±1 and b′ ∈ C are free.
Since the properties of Hamiltonian (1) are not changed
by adding a constant term, we will concentrate on the
invariance of H under osp(2, 2). A straightforward calcu-
lation shows that H in fact commutes with all the eight
generators above if, and only if, the following constraint
equations are fulfilled by the Hamiltonian parameters,

sX = st− b′
(
st+

U

Z

)
, sX̃ = (1− b′)2

(
st+

U

Z

)
,

W = −
[
st− b′

2(
st+

U

Z

)]
=V, Y =

U

Z
,

µe

Z
=st, (4)

with Z number of n.n. in Λ. It is easily verified that in
fact the freedom in the choice of s corresponds to the
possibility of changing the sign of all the contributions t,
X, and X̃ to the hopping term in (1), by means of the
canonical transformation cj,σ → (−)|j|cj,σ. As the latter
leaves unchanged the remaining part of the Hamiltonian,
from now on we choose s = +1.

In the following, we shall label by Hss the Hamilto-
nian (1) in which the parameters are constrained by (4).
Apart from the hopping amplitude t, which can be scaled
away, the independent free parameters in (4) are two, b′

and U/Z. Setting W = 0 fixes one of the two parameters
and the one-parameter BGLZ Hamiltonian discussed in
[2] is recovered, whereas setting b′ = 0 = U/Z, no more
free parameter is left, and the integrable supersymmetric

t−J model is obtained. Moreover, for b′ = 1 the other pa-
rameter U/Z becomes a multiplicative constant, and the
EKS Hamiltonian is obtained [9]. Notice that the latter,
however, turns out to have a larger symmetry superalge-
bra, i.e. u(2, 2), of which gl(2, 1) is a subalgebra. As all
of these particular cases are integrable in one dimension,
one may wonder whether the whole two-parameter class
of gl(2, 1) invariant Hamiltonians is integrable for d = 1.

Let us notice that the fact that Hamiltonian Hss com-
mutes with the operators given in (2, 3), allows the con-
struction of many eigenstates of H. Indeed, starting form
a known eigenstate |ψ〉 of Hss, which for simplicity we
assume to be of highest weight, Sn−|ψ〉 (with n ≤ Ne,
and Ne number of electrons on the lattice) and Qσ|ψ〉
are still eigenstates of Hss. In particular, Qσ|ψ〉 generate
eigenstates with holes with respect to |ψ〉. For instance,
by taking |ψ〉 equal to the fully polarized ferromagnetic
state (with up spins) at half-filling, the state Q↓|ψ〉 can
be shown to be the ground state in appropriate regions
of the parameter space [12] with one hole in a half-filled
band. In general, the eigenstates generated in this way are
degenerate in energy with |ψ〉 for µe/Z = t, whereas they
could have lower energies than |ψ〉 for different filling (and
chemical potential) values.

3 R-matrix in gl(2, 1) and the BGLZ model

In order to investigate the relation between Hamiltonian
(1) in d = 1 and integrable models in gl(2, 1), we briefly
review here the construction of the R-matrix acting on
the tensor product of two four-dimensional representa-
tions [b, 1

2 ] of gl(2, 1), according to the scheme developed
in [5]. For a more detailed exposition of the general scheme
of QISM see also [8]. The origin of the parameter b is in the
u(1) subalgebra of the even part of gl(2, 1), which – in the
fermionic representation given above – is generated by B.
The even part consists as well of a su(2) algebra generated
by S±, Sz . Thus the basis for the four dimensional rep-
resentation can be labeled also by the eigenvalues of the
total spin and the z component of the spin. The states can
be ordered in the following way

|b,
1

2
,

1

2
〉 ≡ |1〉, |b,

1

2
,−

1

2
〉 ≡ |2〉,

|b−
1

2
, 0, 0〉 ≡ |3〉, |b+

1

2
, 0, 0〉 ≡ |4〉, (5)

where |1〉 = (1, 0, 0, 0) and analogous definitions hold for
|2〉, |3〉, and |4〉. In the electronic model given by (1) they
can be identified with the four possible electronic states
at a given lattice site, i.e. a single electron up, a single
electron down, an empty site and a doubly occupied site
respectively. As we are in a Z2 graded algebra, the basis
vectors have two possible gradings. The first two states
have grading equal to 1, the other two equal to 0. It was
shown in [2,5], that in the above basis a R-matrix satis-
fying Yang-Baxter equations

Rb1,2(λ−µ)Rb1,3(λ)Rb2,3(µ)=Rb2,3(µ)Rb1,3(λ)Rb1,2(λ−µ),

(6)
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(where the subindices refer to the spaces on which R acts
nontrivially) reads

Rb(µ) =
2µ− 2b+ 1

2µ+ 2b− 1
It1

+
2µ− 2b+ 1

2µ+ 2b− 1

2µ− 2b− 1

2µ+ 2b+ 1
It2 + It3. (7)

Here It1, It2, and It3 are the intertwiners for the three
irreducible components of the tensorproduct [b, 1

2 ]⊗ [b, 1
2 ],

as derived explicitly in [5], and reported here in the Ap-
pendix. Notice that by construction the three intertwiners,
as well as the R-matrix, are all invariant under gl(2, 1).
µ = 0 is the shift point, i.e. Rb(0) = P , where P is the
graded permutation operator of the states (5) at sites j
and k. Explicitly

P |n〉j ⊗ |m〉k= |m〉k ⊗ |n〉j=(−)εnεm |n〉j ⊗ |m〉k,

n,m = 1, . . . , 4 (8)

where εm is the grading of the state |m〉. It is easily verified
that P = It3 + It2 − It1.

The existence of a shift point guarantees the possibil-
ity of constructing from R-matrices integrable local one-
dimensional models. Here by local we mean that the model

HamiltonianH can be written as the sum
∑N
j=1Hj of con-

tributions Hj which act non-trivially only on j and a finite
number of neighbours of j. The number of commuting lo-
cal Hamiltonians is infinite in the thermodynamical limit.
They can be identified with the integrals of motion, and
enter as coefficients (Hk) in the power expansion in µ of
the logarithm of the transfer matrix τ(µ),

ln τ(µ)τ(0)−1 =
∞∑
k=1

µk

k!
Hk+1. (9)

Here τ(µ) is the supertrace of the monodromy matrix,
which in turn is obtained from the R-matrices by taking
matrix products in one component of the tensor product
(the auxiliary space).

The first integral of motion generated in this way has
been shown to coincide (apart from a multiplicative con-
stant) with the BGLZ Hamiltonian, as can be verified by
comparison of

H2 =

(
∂ ln τ(µ)

∂µ

)
µ=0

=
∑
j

Pj,j+1

(
∂Rj,j+1(µ)

∂µ

)
µ=0

,

(10)

with (1), (4) for W = 0. This proves integrability of the
BGLZ one-parameter supersymmetric Hamiltonian.

4 An alternative derivation of supersymmetry
condition

The fact that the most general Hamiltonian invariant
under gl(2, 1) has two free parameters is related to the

number of independent intertwiners in the representation,
which is two (since It1 +It2 +It3 = I, the latter being the
identity matrix). One may then wonder which is the actual
expression of Hss in terms of the intertwiners. A tedious
but straightforward calculation allows us to recognize that
the following relation holds,

Hss = k

HBGLZ + a
∑
j

(Pj,j+1 − I)

 , (11)

where k = −[2/(2b− 1) + a]−1. The Hamiltonian parame-
ters, written in terms of the arbitrary constants a, and b,
are given by

µe

kZ
= k−1,

U

Z
= k

(
4

4b2 − 1
+ a

)
= Y,

W = −kaX = 1−
2k

√
4b2 − 1

,

X̃ = 1− k

(
a+

4
√

4b2 − 1
−

2

1 + 2b

)
, (12)

which are easily checked to satisfy (4) for b′ = −

√
b + 1

2

b − 1
2

.

The above expression (11) is particularly interesting,
in that it shows that all the Hamiltonians invariant under
gl(2, 1) are sum of two separatly integrable models, the
BGLZ and the EKS. In fact setting a = a′/k and tak-
ing k = 0, a′ 6= 0, the model obtained is nothing but the
EKS Hamiltonian [9], even though such Hamiltonian can-
not be obtained as derivative from the R-matrix (7) for
any suitable value of b. Indeed, the model in this case,
as it simply acts as a graded permutation of the elec-
tronic states at sites j and j + 1, is integrable [13,14].
This observation suggests that there must exist a more
general R-matrix than (7) which satisfies YBE. As a fur-
ther example, let us notice that a different class of one-
parameter supersymmetric Hamiltonian is obtained in [3],
starting from a slightly different one-parameter R-matrix
in gl(2, 1). There the main difference, from the physical
point of view, is that the resulting model has vanishing co-
efficient of the pair-hopping term (Y ), and non-vanishing
coefficient of the exchange term (W ), as opposite to the
case described by BGLZ Hamiltonian.

A more general R-matrix still satisfying YBE is the
trigonometric R-matrix which can be built in the de-
formed algebra Uq(sl(2, 1)). In this case the R-matrix ac-
quires a natural extra parameter which is the deformation
parameter q. Such two-parameter R-matrix, and the cor-
responding one-dimensional integrable models, have also
been considered in the literature [3,6,7,15]. However in
particular the resulting electronic models are definitly dif-
ferent from the one described by Hss, in that they exhibit
anisotropy in the correlated hopping terms.

The possibility that the Hamiltonian Hss is itself in-
tegrable, in the sense that it can be obtained directly
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It3 =
1

2



0

β̄ −β̄ −
√
ββ̄ −

√
ββ̄

1 1
0

−β̄ β̄
√
ββ̄

√
ββ̄

0
1 1

0
1 1

1 1
0

−
√
ββ̄

√
ββ̄ β β

0
0

−
√
ββ̄

√
ββ̄ β β

0



(A.1)

as derivative of some rational two-parameter R-matrix,
is also hinted to by the fact that Pj,j+1 commutes with
all the derivatives of Rbj,j+1, which enter the definition of
the infinite set of integrals of motion, and in particular
of HBGLZ through (10). Nevertheless, the definite prove
would be to show that some linear combination of Rb(µ)
and P−I, which separately satisfy YBE, does satisfy YBE
as well.

5 Conclusions

We have derived the most general extended Hubbard
Hamiltonian invariant under the graded algebra gl(2, 1),
which turns out to have two free parameters. The knowl-
edge of this symmetry (which holds in any dimension)
is useful to generate new eigenstates for the model. The
latter, by means of known techniques [11,12,16], could be
eventually proved to be the ground state in certain regions
of phase space, also away from half-filling. Moreover, by
successively confining our analysis to the one-dimensional
case, we have shown that the supersymmetry condition
for the Hamiltonian can be reformulated in terms of inter-
twining operators of the representation in such a way that
Hss is recognized as the sum of the BGLZ Hamiltonian
plus an extra-term proportional to the graded permuta-
tion operator of electronic states on neighbouring sites.
Work is in progress on the open point of deriving from
such information the possible integrability of Hss.

I would like to thank David Campbell for discussions and hos-
pitality at the Department of Physics of Urbana-Champaign. I
am grateful to Petr Kulish for lively and educating discussions
on QISM and quantum groups.

Appendix

The projection operators It1 = 1
2 (I−P ), It2 = 1

2 (I+P )−
It3, and It3 are given in [5]. Here we give It3, from which
the other two are easily obtained.

See equation (A.1) above

with β = (2b+ 1)/4b, β̄ = (2b− 1)/4b.
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